
38  Jan/Feb  2005 

11581 Aspendell Dr 
San Diego, CA  92131 

Why Antennas Radiate 

By Stuart G. Downs, WY6EE 

Antenna theory is a popular subject with hams. We 
love to read and talk about it. Now put on your 

thinking cap and fasten your safety belt for a 
review of  the math and science behind it. 

1Notes appear on page 42. 

Mastering an understanding of 
electric and magnetic fields is 
not easy. The electric field E, 

the magnetic field B and the vector 
magnetic potential A, are abstract 
mathematical concepts that make 
practical presentations difficult. Those 
fields, however, have everything to do 
with why antennas radiate. Explana-
tions for the qualitative and quanti-
tative relationships between electric, 
magnetic and potential fields are 
presented. 

All electromagnetic field equations 
are interrelated. Each represents a 
different aspect of the same thing. In-
deed, we may derive one from another! 
Here we shall examine the dc case, and 
then move on to RF. First, we owe it to 

ourselves to cover the fundamentals. 
We shall begin with E and B. As-

sume that both fields are constant in 
magnitude (uniform) and observable. 
In our first example, they are produced 
by a single charged particle moving at 
a constant velocity v in a vacuum. 
Next, changing magnetic and electric 
fields produced by time varying an-
tenna RF currents are discussed. In 
all cases, fields are produced both by 
stationary charge and charge in mo-
tion. All charge we assume to be con-
nected through fields. We observe that 
the fields change when charge is in 
motion relative to an observer. 

It is very important to realize that 
both constant and time-varying fields 
cause action at a distance. That is to 
say, an electron’s field affects other 
electrons some distance away. 

What is a field? No one really 
knows. Field lines were visualized by 

Michael Faraday. The idea came from 
the orientation of iron filings that he 
observed on top a piece of paper with 
a magnet (lodestone) placed beneath 
it. According to the Richard Feynman,1 
a field is a mathematical function we 
use to avoid the idea of action at a dis-
tance. We can state that a field con-
necting charged particles causes them 
to interact because the field exerts a 
force on charged particles. 

Does this mean that all matter in 
the universe is connected through 
fields? As one so elegantly put it: 

All things by immortal power, 
Near or far, 
Hiddenly 
To each other linked are, 
That thou canst not stir a flower 
Without troubling of a star....” 
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From “Mistress of Vision” by En-
glish poet Francis Thompson (1857- 
1907) 

Charge in Motion Gives Rise to a 
Magnetic Field 

All charged particles produce an 
electric field E. The E field can point 
inward or outward, depending on the 
sign of the charge, and is infinite in 
extent. The field causes action at a 
distance. See Fig 1. Because the field 
has both a magnitude and direction, 
we shall represent it as a vector. The 
same is true of a particle’s velocity, so 
it is also a vector. Vectors are hence-
forth indicated by boldface letters. 

The only magnetic field associated 
with a stationary charged particle is 
its spin magnetic dipole moment, but 
we shall ignore that for now. No other 
magnetic field is produced by station-
ary charged particles because the par-
ticle and its E field are not in motion 
relative to the observer. 

When a particle with charge q moves 
with velocity v, its E field changes: It 
becomes dynamic. The dynamic E field 
gives rise to a B field as seen by “Joe 
Ham,” a stationary observer, in Fig 2. 
Joe observes that constant-magnitude 
electric and magnetic fields are present 
simultaneously. The magnitude of B 
depends upon the velocity v of the par-
ticle. The magnetic field that Joe 
observes is:2 

EvB ×= 2
1

c
(Eq 1) 

where c is the speed of light in m/s, v 
is charge velocity in m/s and E is the 
E field in V/m. Note that if v = 0 then 
B = 0 (no magnetic field). If the veloc-
ity of the E field were c, then we would 
have E=cB, which is what we have 
with a freely propagating electromag-
netic wave. The cross product, desig-
nated by X, between the velocity 

vector v and the E vector indicates 
that particle velocity is perpendicular 
to both the E and B fields. The B field 
in Eq 1 is bound to the moving charged 
particle, as observed by Joe. The B field 
comes from a relativistic transforma-
tion of the E field involving the ratio 
v/c. Einstein introduced the world to 
relativity 100 years ago, in 1905! 

The E field multiplied by v/c² that 
transforms to the become the B field 
in Eq 1 is:2 
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(Eq 2) 
where ε0 is the permitivity of a 
vacuum, r is the distance from the 
particle’s line of travel, θ is the angle 
between the E field and the particle’s 
direction of travel, and r̂  is a vector 
of unit length pointing in the direction 
from the particle to the place where E 
is evaluated. The magnitude of B (see 
Note 2) is found by substituting Eq 2 
into Eq 1: 
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(Eq 3) 
Therefore, for a moving charged 

particle in free space with no external 
influences, a portion of its E field gets 
transformed, becomes dynamic, and 

appears as the B field multiplied by 
the coefficient v/c². This means that if 
particle velocity increases, the magni-
tude of the B field increases propor-
tionally. An observer sees both the B 
field and the E field at the same time 
with charge in motion. Note that the 
B vector is perpendicular to the E vec-
tor, to the velocity vector v. Einstein 
recognized this very fact by thinking 
about one of Maxwell’s equations and 
the result was relativity. The picture 
assumes that θ in Eq 3 is 90°. 

To summarize, the magnitude of the 
resulting magnetic field depends upon 
the velocity of the charge and the 
amount of charge. This means that the 
B field really is the relativistically 
transformed E field! The two fields 
must always change together and they 
do. If the B field source is the E field, 
can there be such a thing as a B field 
by itself without an E field? The an-
swer may surprise you. 

Charge Moving at Constant 
Velocity Produces a Constant 
Magnetic Field 

Charge flow in a wire is obviously 
very much different from that of an 
isolated charge moving in free space. 
However, exactly what is different and 
why? 

Assume that there are no un-
matched charges in our wire. That 
means the number of electrons (nega-

hed c

Fig 2—The B and E fields of an electron moving with a constant velocity v. 

Fig 3—Magnetic field lines around a wire with dc current. 

Fig 1—An isolated charged particle with 
its E-field lines. E fields cause action at a 
distance. The effect is very small for small 
charges a great distance apart. 
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tive charges) equals the number of 
protons (positive charges) in the wire. 
Experiments have confirmed that cur-
rent flow in such a wire produces only 
an observable magnetic B field at a 
distance r from the wire. The electrons’ 
radial E fields are not observed at all. 
If Joe Ham were the observer, he 
would say there were no E fields 
present. The drift velocity of the mov-
ing charge is constant, so the B fields 
is just a function of the number of 
charges in motion and their velocity. 
See Fig 3. 

Constant DC current in an infi-
nitely long wire produces a uniform 
magnetic field along the wire’s entire 
axial length. The magnitude of B ev-
erywhere along the axis at a distance 
r from the wire is the same. The mag-
netic field lines extend to great dis-
tances and they always close on 
themselves, unlike electric field lines, 
which always terminate at a charge. 

Joe might ask the question, “If the 
B field came from the E field, then how 
is there now only a B field observable?” 
Perhaps we should state that there is 
no net E field present. Now I would 
like to propose another question: If 
there is no net E field present, is there 
an E-field energy density present? 

The Wire’s Unobserved Net E Field 
Let’s say that there is a moving ra-

dial E field that accompanies charge 
flow in a wire and it cannot be ob-
served for some reason. We know that 
protons are fixed in the wire’s metal-
lic lattice and that the electrons are 
the charges that actually move. The 
proton static radial E field is uniform 
and produces no B field because there 
is no relative motion with respect to 
the observer. The electrostatic E field 
from all the wire’s protons and elec-
trons cancel and we are just left with 
the B field. The E fields of the protons 
and electrons, of the same magnitude 
but of opposite directions, must be zero 
or very close to it for Joe not to ob-
serve them. 

Is there a basis for this in physics? 
The answer is yes. The big question 
is: How do we know this? The energy 
density of each field must be present. 
If this were not the case, then the law 
of superposition would be violated. 

Superposition of Like Field 
Quantities 

We know from the principle of field 
superposition that the net vector field 
produced by two separate vector fields 
of the same kind (either E or B), at 
the same time and place, is the vector 
sum of those individual fields. That 
may help additionally to explain why 

no net E field is observed when cur-
rent flows in a wire. The E field from a 
fixed proton must exactly cancel the 
nonrelativistically transformed E field 
from the moving electrons. 

The superposition principle also 
works for magnetic fields according to 
Feynman (See Note 2). That is to say, 
individual small amounts of magnetic 
field strength dB combine to produce 
the macroscopic strength that we ob-
serve. Is it possible to test for energy 
density where the net E field is zero 
and is not observable? 

Gauss’s Law 
Let’s use superposition and the con-

cept of the closed surface to prove what 
we discussed earlier and what we saw 
in Fig 4. To do it, we extend the dis-
cussion to another term called flux. 
Flux is the electric field strength as-
sociated with each unit area through 
a surface. Feynman3 relates flux and 
charge in the following way: “The E- 
field flux Φ through any closed surface 
is equal to the net charge inside that 
surface divided by the permittivity of 
free space.” That is Gauss’s law. The 
closed surface could be a sphere con-
taining some charge, or any other 
shape so long as it fully encloses the 
charge. In mathematical terms: 

0ε
Φ total

total
q

= (Eq 4) 

Thus the net E-field flux passing 
through the surface enclosing our wire, 
which has a net charge of zero, is zero. 

It is interesting to note that if we 
used superposition to determine en-
ergy density (energy/volume) by sum-
ming the E-field energies of protons 

and electrons, the energy densities do 
not cancel, they add! The reason is that 
in the calculation of energy density, the 
E-field is squared. This yields two posi-
tive numbers so there can be no net 
density cancellation. The proof that 
field energy density is present is be-
yond the scope of this paper. I suspect 
that it has something to do with grav-
ity. Didn’t Einstein show us that mat-
ter and fields were both essentially 
forms of energy? 

The Biot-Savart Law 
It turns out that there is a law that 

may be derived from Eq 3 that sup-
ports the idea that all B fields arise 
from changing E fields. Everything 
about it is self-consistent. It is called 
the Biot-Savart law. 

The Biot-Savart law allows deter-
mination of B a distance r away from 
a wire for a given dc current. To per-
form an actual calculation, one would 
break the wire into infinitesimally 
small segments dl and integrate along 
the entire length of the wire all the 
infinitesimally small dB contributions 
they produced at some distance r from 
the wire. The sum would be the mag-
netic field strength B at that distance. 

To derive this law, we begin with 
Eq 3 and assume that the magnitude 
of B is changing with time. In the no-
tation of calculus, the rate of change 
would be dB/dt, where t is time. Tak-
ing the time derivative of the magnetic 
field, we get: 
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Fig 4—Electron motion in a wire and particle E fields. 
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Assuming θ = 90°, it is easily shown 
that: 













−
= 21222

0 1

1

4 /)(c

v

r

q
dt
d

dt
dB

βπε

(Eq 6) 
Note that γ =1/(1-β²)1/2 is a com-

monly used relativistic term. Using 
the binomial expansion theorem for 
the relativistic term and β²=v²/c², we 
see that: 
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when v is small with repect to c. Sub-
stituting in the relativistic gamma 
term γ, we see: 
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The gamma function γ stretches the 

electrostatic field q/(4πεr²). Now sub-
stituting in Eq 7: 
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Knowing that v <<c, we use a sim-
plification so that the inside term in 
parentheses of Eq 9, goes to zero. Ad-
ditionally, we multiply both sides by 
dt and we end up with: 
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Lastly, we know that vdt = dl (ve-
locity times time equals distance); cur-
rent I=dq/dt (charge per unit time) 
and µ0 =1/ε0c² (the permeability of a 
vacuum), we arrive at the magnitude 
form of the Biot-Savart law with 
θ = 90°:4 
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We derived the Biot-Savart law 
from charge in motion in free space. 
Biot and Savart experimentally de-
duced4 this relationship that links a 
current segment in a wire to an infini-
tesimally small magnetic field dB a 
distance r away from the wire. It is 
taught in physics textbooks today4, 5, 6 
and forms the basis for magnetic in-
duction. For example, Ampere’s and 
Faraday’s law can be derived from 
the Biot-Savart law. So magnetic fields 
are related directly to currents. See 
Fig 5. 

Fig 5—A pictorial representation of the Biot-Savart law. 

Fig 6—A dipole antenna and surrounding fields. 

Electromagnetic Radiation 
Up to now, we have been looking at 

fields bound to or coupled to charges 
moving at constant velocities. We have 
also seen that a stationary observer 
sees only the B field for charge mov-
ing at constant velocity in a wire, and 
that velocity has been slow. Now what 
would happen if the charge velocity 
rapidly changed, as in the case of an 
RF signal? What if charge velocity 
were changing at a high rate? 

When its velocity is changing, we 
say a particle is accelerating. Decel-
eration is just negative acceleration— 
it’s just a matter of signs. Acceleration 
of charges is what launches radio sig-
nals. However, the E field here is one 
of a different color. We have seen that 
as field velocity goes to c, both E and 
B propagate together at the speed of 
light so that E=cB. However, how ex-
actly does an antenna launch such an 
electromagnetic wave? 

What really happens is that elec-
trons in an antenna accelerate and de-
celerate because of the application of 

some time-varying electromotive force 
(EMF or voltage) to the antenna. A 
time-varying EMF implies the presence 
of a time-varying electric field E. Each 
electronic charge q in the antenna ex-
periences force F=qE and therefore ac-
celerates and decelerates according to 
F=mA, where m is the mass of the elec-
tron and A is acceleration. 

 A 

A is acceleration. 
, we ha

 
Thus, we have an alternating cur-

rent in the antenna. The simplest al-
ternating current is sinusoidal since 
it consists of a single frequency. We 
have shown that a changing E field 
gives rise to a B field. The fields propa-
gate with velocity c, but the drift ve-
locity of the electrons in the antenna 
travel at some much lower velocity v. 
The magnitude of the fields must vary 
in a sinusoidal fashion from point to 
point along the wire’s length. It is in-
teresting to note that the electron 
speed and the wave speed appear to 
detach from each other. 

h lower velocity v. 

The radiated B field is perpendicu-
lar to the antenna while the E field is 
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parallel to it. Both move outward from 
the antenna with speed c with respect 
to the antenna. See Fig 6. Nevertheless, 
how do we get a parallel E field when 
we know that the E-fields of the elec-
trons themselves are perpendicular? 

We saw above that in a wire having 
zero net charge, the E field caused by 
the electrons is not measurable mac-
roscopically. Recall that is because the 
E field from the protons cancel it. All 
that is measurable outside the wire is 
the B field. But it has been shown that 
just as changing E fields produce B 
fields, the reverse is also true: Chang-
ing B fields produce E fields. The ori-
entation of whichever field is so pro-
duced actually counteracts the change 
in the field producing it. 

It might seem at first that this reci-
procity would prevent anything from 
happening, since one effect tends to 
cancel the other, and that tendency is 
true. It’s called Lenz’s law and it is an 
essential physical fact, not just some 
arbitrary convention about signs or di-
rections. It is an interesting manifes-
tation of physical systems’ resistance 
to change, akin to Newton’s first law of 
motion. It implies that some energy 
must be added to the system to build 
fields. It is convenient to think of that 
energy as being stored in the field. 

In our antenna, we start with only a 
B field outside the wire, but it is chang-
ing and propagating away from the 
wire at speed c. When the current in 
the wire alternates rapidly enough, the 
changing B field propagates away be-
fore the Lenz effect can cancel it. Since 
the B field is also alternating, it is ac-
companied by an alternating E field 
whose peak magnitude grows to its fi-
nal value as the wave is launched. That 
first stage of wave formation takes 

place in what we call the near field. 
The near field is generally consid-

ered within about 10 wavelengths. 
Outside the near field is the far field. 
In the far field, where the electromag-
netic wave freely propagates outward, 
E=cB at all times everywhere. Thus the 
near field is chiefly magnetic and E<B. 

For more detailed discussion and 
mathematics surrounding the above 
topics, navigate to www.arrl.org/ 
qex/. Look for 0501Downs.zip. 

Summary and Conclusion 
The radial electrostatic field in 

motion around a current carrying wire 
is not observed. This is so because 
there is no net charge in the wire, and 
the net E field from all of the wire’s 
protons and electrons cancel. To ob-
serve any net E field would violate 
Gauss’s law. 

In an electromagnetic wave, E 
drops off as 1/r in the far field whereas 
an electrostatic field drops off as 1/r2. 
Therefore, E in the travelling wave 
cannot be an electrostatic field. It is 
the changing field generated by the 
changing B field around the antenna. 
Likewise, E in the travelling wave is 
generated by the changing B field. 
Mutual recreation occurs perpetually 
and the wave travels at velocity c. 
James Maxwell proved it. 

E and B fields are mathematical 
constructs we use to describe action 
at a distance. They are really mani-
festations of the same thing. There are 
particle theories of electromagnetic 
radiation, too, but we chose not to dis-
cuss them here. 
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