QEX-18/01
Technical Note
Page 1

Increase you Resistor Inventory with this Resistor Search Program
MatLab Code and Resistor Lists
I generated and run the code in MatLab, but it can be adapted to C or other languages.
% ******************************Start Code*********************************
% * *
% * Title: ReSearch.m *
% * Abstract: A program to calculate selected parallel resistances from a *
% * list of resistors on hand and calculate a desired *
% * resistance by selecting resistance values from the new *
% * resistance list. *
% * *
% * *
% * Version: 1.00 *
% * Date: 2017-04-29 00:34:32 *
% * Coded By: Dan Bobczynski KG4HNS *
% * *
% ***
% ***
% ***
% Copyright (C) 2017 Dan Bobczynski KG4HNS
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% 2017 Dan Bobczynski KG4HNS
% ***
%
% The ReSearch.m program creates an expanded list of resistance
% values from a supplied list of resistors to aid in searching for parallel
% and series resistor combinations to form a desired resistance.
%
% It calculates the resistance of two resistors in parallel from a list of
% owned resistors. Each resistor is paired one at
% a time with the next resistors in the list. For each combination, a
% record is produced showing the computed parallel resistance, and the
% values of the two resistors used. This can then be used by a simple bin packing
% program to select and add up the desired resistance from the new resistance
% list. The bin packing program would then traverse this new list
% accumulating resistance records of value equal or less than the desired
% resistance until the desired resistance is approximated. The search
% depth determines the sample set size.
%
% The actual owned resistor list is also incorporated into the new list.
%
% The search depth determines the size of the output list, however the law
% of diminishing returns kicks in
% when going very deep, e.g, pairing a 1M resistor with a 1 Ohm resistor is
% of little value. The search depth limit should be determined by the
% percentage difference between paired resistances. A depth of six
% seems to accomodate most needs.
%
%
% Usage:
%
% The user must input; the name of the file containing
% the list of owned resistors; the search depth; the desired resistance;
% and the tolerance.
% The resistor values are then read into to the 'r' array.
% Upon completion, the new expanded resistance list resides in the
% 'nc' array. Each row of the 'nc' array
% contains: New resistance value; Resistor 1; Resistor2,
% where Resistor 1 and Resistor 2 are selected from the list of
% owned resistors. The nc array is then sorted, producing the
% ncsorted array. The desired resistance is then found by selecting and
% adding resistance values until the tolerance is met.
%
%
% run MakeResistors
clear % Clear the workspace
instring = input('Resistor list file name ? ','s'); % Input owned resistor file name
r = importdata(instring); % Input owned resistance values
r = sortrows(r); % Sort the input resistance list
limitresolution = ('Resolution Limit Reached'); % Set up the resolution message
sdepth = input('Search depth ? (0 ends program) '); % Input desired search depth
if sdepth == 0
 exit % User inputs zero to quit
end
cdepth = sdepth;
dres = input('Desired resistance ? '); % Input resistance desired
drestol = (input('Desired resistance tolerance in percent ? '))/100;
format shortEng % Set the output format
rsize=length(r); % Get the input array length
alloc = (rsize-sdepth)*(sdepth+2) + sum(2:sdepth+1);
n= zeros(1,alloc); % Preallocation of new value list saves time
nc=zeros(alloc,3); % Preallocate search results record list
ixn=1; % Initialize new list index
k=1; % Initialize resistor 2 index
for j=1:rsize % Do for the number of owned resistors
 if j > rsize - sdepth % If not near the end, keep search depth the same
 cdepth = cdepth - 1; % If near the end, adjust search depth to equal remaining values
 end
 for i=0:cdepth % Do for the deph of search
 n(ixn)= 1/(1/r(j) + 1/r(i+k)); % Calculate the parallel resistance from resistor 1 and resistor 2
 nc(ixn,1) = n(ixn); % Fill out the new resistance record with computed value
 nc(ixn,2) = r(j); % Fill out the new resistance record with resistor 1
 nc(ixn,3) = r(i+k); % Fill out the new resistance record with resistor 2
 ixn = ixn + 1; % Increment the new list index
 end % End of depth search
 nc(ixn,1) = r(j); % Insert the owned resistor value into the new list
 ixn = ixn + 1; % Increment the new list index
 k= k+1; % Increment the resistor 2 index
end % End of number of owned resistors
ncsorted= sortrows(nc); % Sort the output resistance records on the result field.
 % Results Format:
 % Each row (record) of ncsorted contains the results of
 % the parallel calculation and the values of the two owned
 % resistors used in the calculation as follows:
 % Result value; Owned resistor #1; Owned resistor #2
 %
 % To obtain the resistance required, simply select resistors
 % from the new list to be placed in series.
dresidx = find((ncsorted(:,1))<=dres); % find the record with largest resistance less than or equal to desired
dresix=dresidx(end); % get the index to it
dressum=ncsorted(dresix,1); % get the resistance from the sorted records
resseries(1) = ncsorted(dresix); % initialize resseries (the resistances to use)
for m=1:ixn % Now search records for values to place in series to make the desired resistance
 residx = find(ncsorted(:,1) <= (dres - dressum)); % get index list of next value less than (desired - current sum)
 if isempty(residx) | dressum == 0 % quit if sum is 0 or no next value
 limitresolution
 break
 end
 resix = residx(end); % get last index from found list
 dressum = ncsorted(resix) + dressum; % add the new value to form desired resistance
 resseries(m+1) = ncsorted(resix); % append the found record to resistances to use
 if abs(dres - dressum) <= drestol*dres % if desired tolerance reached, quit
 break
 end
 if (dres-dressum) <= ncsorted(1) % quit if no smaller resistance can be found
 no_smaller_resistor = ('TRUE')
 break
 end
end
 format shortEng
 Use_these_ncsorted_resistances = resseries' % list out the series resistance values and composite resistors
 To_obtain_this_resistance = dressum
 %format bank
 format shortG
 Actual_Tolerance = ((dres - dressum)/dres)*100 % list the actual tolerance obtained
 format shortE % set format for demo
 % format shortEng % set format for full output
 ncsorted % list entire resistance list for demo
%end
% semilogy(ncsorted(:,1),'.') % have a look at the resister
% hold on % pair differences vs th
% semilogy(r,'*') % resulting resistance.
% hold off
% *******************************End Code**

