
QST® – Devoted entirely to Amateur Radio www.arrl.org Reprinted with permission from September 2016 QST

Tom Lewis, N4TL
Many years ago, I wanted to write a CW training program that
would send a few characters of Morse code and then listen for
me to send the same characters back with my Morse key. If I
replied correctly, the program would go on to new characters.
If I got it wrong, it would tell me I made a mistake and send the
same ones again. A person using the trainer should not write
anything down, but rather listen to the code, remember what had
been sent, then send it back to the trainer. You learn to receive

Arduino CW Trainer
Hone your Morse code skills
with this entry-level project.

QS1609-Lewis01

R
E

S
E

R
V

E
D

IO
R

E
F

R
E

S
E

T

3V 5V G
N

D
2

G
N

D
1

V
IN

A
0

A
1

A
2

A
3

A
4/

S
D

A

A
5/

S
C

L

S
C

L

S
D

A

A
R

E
F

G
N

D

D
13

D
12

D
11

D
10 D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

U1
Arduino Uno R3

D1

1N4001

BT1

9V

S
C

L

S
D

A

V
C

C

G
N

D

U2 16×2 LCD

S1

Power
+5 V

Keying
Output

K1

J1

1

2

D2
1N4001

LS1

J2+5 V

Clock

Data

1

2

3

4

Gnd

3

To PS/2
Keyboard

DIN
Connector

Data

1

2

Gnd

J3

Key In

+5 V

S2

Figure 1 — Schematic of the CW Trainer. (PID numbered parts from www.adafruit.com.)

BT1 — 9 V battery, or ac adapter PID 63
D1, D2 — 1N4001 Diode, PID 755. D1 is

needed only if a battery is used
J1 — Mini output jack
J2 — PS/2 wired connector, PID 804; green is

power, black is ground, yellow is clock, and

brown is data; the red and white wires are not
used

J3 — RCA jack, keying input
K1 — RadioShack 5 V reed relay
LS1 — Mini speaker, PID 1890
S1 — SPST switch
S2 — Momentary contact pushbutton

U1 — Arduino Uno R3, PID 50
U2 — RGB LCD Shield Kit with 16 × 2 display

PID 714 — requires soldering; pushbuttons
are not used in this project

U3 — Adafruit Proto Shield kit R3, PID 2077;
not shown; goes between the Arduino and the
LCD display shield

Reprinted with permission from September 2016 QST ARRL, the national association for Amateur Radio® www.arrl.org

and send the code entirely by sound.

Recently, I examined Arduino for Ham
Radio by Glen Popiel, KW5GP, and real-
ized I could write the CW training program
for the Arduino.1 Arduino provides a
free Arduino Development Environment
(ADE) to develop sketches (programming
code).2 The ADE compiles and uploads
the code to the Arduino through a USB
cable. The Arduino uses open-source code,
meaning that the code is freely available for
you to use or modify.

Figure 1 shows the schematic of the CW
Trainer based on U1, the Arduino Uno R3
and U2, the 16-character by two-line LCD
display. This kit has an IC that converts
the many wires from the LCD to just four
— two for power and ground and two for
signaling. The IO shield, U3 (not shown),
goes between the Arduino and the LCD
display shield. It has a reed relay and places
to connect all the wires to the switches and
jacks.

The library for the Adafruit LCD shield
kit can be downloaded from the Adafruit
website.3 The LCD display also has a
library of code that supports its operation.
Because my LCD is different than the one
Glen uses in his book, I needed to install the
new library in the ADE and make changes
in the sketch to use the correct LCD library.

Figure 2 shows my original breadboard
with the LCD display connected by jumper
wires to the Arduino board. The lead photo
shows the final assembly housed in the
food container. I left room for a 9 V battery,
but I found that the battery did not last very
long. I use an external power supply that
plugs into the Arduino. I used some cotton
to hold the speaker in place.

The Sketch
My sketch, which uses parts of the sketches
in Glen’s book, is available on the QST in
Depth web page.4 One part is from Chapter
19, “PS/2 CW Keyboard” and the other is
from Chapter 22, “CW Decoder.” I wanted
to generate and send random characters, so
I used the random number generator built
into the Arduino language. I wanted to as-
sociate a random number from 0 to 39 with
40 Morse characters. In my sketch, I first
associate the 10 numbers with 0 – 9, the 26
alphabet characters with 10 – 35, and the
comma (,), period (.), slash (/), and question
mark (?) with 36 – 39.

Table 1
Keyboard Keys and Their Function

Key Function

Up arrow Increases the sending speed
Down arrow Decreases sending speed
Right arrow Increases the number of characters sent before the Arduino checks
 for incoming characters sent by the learner
Left arrow Decreases the number of characters sent before the Arduino checks for
 incoming characters sent by the learner
F1 Sets the character set to the 26 letters of the alphabet
F2 Sets the character set to the 10 numbers
F3 Sets the character set to “period,” “comma,” “slash,” and “question mark”
F4 Sets the character set to all 40 characters listed in Table 2
F5 Number of Koch method characters — enter 1 or 2 digits followed by
 the ENTER key
F6 Number of characters to skip over in Koch method of Table 2 —
 enter 1 or 2 digits followed by the enter key
F9 Toggle between the internal speaker or relay output
F10 Saves the parameters in EEPROM. F10 must be pushed before pushing G
G “Go” — starts sending code characters via the speaker or relay
D “Decode” runs the CW decoder only

Table 2
The Numbers 1 to 40 Associate with the Character Below
in the Koch Method

1 2 3 4 5 6 7 8 9 10
K M R S U A P T L O

11 12 13 14 15 16 17 18 19 20
W I . N J E F 0 Y V

21 22 23 24 25 26 27 28 29 30
. G 5 / Q 9 Z H 3 8

31 32 33 34 35 36 37 38 39 40
B ? 4 2 7 C 1 D 6 X

Figure 2 — My original breadboard shows the LCD display connected by jumper wires to
the Arduino board.

The training sketch first runs some setup
code, then runs a keyboard loop. The
keyboard is used to set parameters in the
program according to the keyboard com-
mands in Table 1. The selected function is

displayed on the LCD. I limited the code
speed to between 20 and 30 WPM. I think
25 WPM is a good speed for learning the
sounds of the characters.

QST® – Devoted entirely to Amateur Radio www.arrl.org Reprinted with permission from September 2016 QST

For updates to this article,
see the QST Feedback page at

www.arrl.org/feedback.

Amateur Extra class license holder and ARRL
Life Member Tom Lewis, N4TL, has been li-
censed since 1967. His early Amateur Radio
interests led to BSEE and MSEE degrees from
the State University of New York at Buffalo. After
college, he worked for Stromberg Carlson in
Rochester, New York, and then OKI Electron-
ics in Fort Lauderdale, Florida. Tom joined IBM
in Boca Raton, Florida in 1984, where he was
one of the engineers who designed the Video
Graphics Array (VGA). He has 14 patents. Tom
retired in 2014 and now spends time with his
family and local ham radio clubs, fixes vintage
radios, and works the NPOTA stations. He has
chased DX for many years and has confirmed
all the DXCC entities. You can reach Tom at
n4tl@arrl.net.

Operating the CW Trainer
Turn the trainer on, then push one of the
function keys to select the character set.
Set the speed and number of characters to
be sent, and push the G key. The trainer
will send a few characters and
wait for you to send them back
using your Morse key. The
trainer checks each character
as it is received. When an in-
correct character is received,
the background color of the
LCD turns red and the trainer
sends the same characters
again. If all the characters
are correct, the LCD’s back-
ground will stay white and send new char-
acters. The characters are displayed on the
LCD. This operation will continue until
the trainer is turned off or the reset button
is pushed. When the trainer is turned on
again, it will load previously saved param-
eters from EEPROM.

I implemented the Koch method in my
sketch — see the G4FON web page — that
teaches by sending a single character at full
speed.5 Then a second character is added,
and as each character is learned, another
one is added. To do this with my sketch, I
associated a second number to the charac-
ter table (see Table 2) in the same order as
in the G4FON program. Table 2 starts with
K and ends with X. When F5 is pushed the
CW Trainer asks on the LCD display for a
one- or two-digit number followed by the
enter key to set the number of characters to
be used. If “2” is entered, only K and M are
sent. If “4” is entered only K, M, R, and S
are sent, and so on.

By the time you are up to 30 characters or
so, you will know the first characters very
well and they need not be sent very often.
F6 is used to skip over the characters at the

beginning of the table. When F6 is pushed,
the CW Trainer will ask for a one- or
two-digit number followed by the ENTER
key. This number is the starting index of
Table 2. If F5 is pushed and “3 6” is en-

tered, then F6 is pushed and
“3 1” is entered, only B, ?, 4,
2, 7, and C will be sent. This
corresponds to entries 31 to
36 in Table 2.

I added a D option to the
keyboard control so you can
practice sending to the CW
Trainer. When D is typed
after power-on or a reset, the

Morse code decoder will be run by itself.
You can send CW and look at the LCD to
discover how well it decodes your sending.

I tested the decoder by sending the alphabet
to it from a WinKey USB Keyer at various
speeds, and found that if the LCD was
scrolled, the Arduino CW Trainer would
make mistakes at higher speeds. I removed
the scrolling and found that the decoder
will work up to about 22 WPM on my
16 MHz CPU. Higher speed CPUs should
allow faster decoding of CW. Leaving a
little space between characters will im-
prove decoding at higher speeds.

When compiling the sketch, make sure that
the PS2 keyboard library has the function
keys defined. The text below is copied from
the first four lines of the PS2Keyboard.cpp
file that I used.

PS2Keyboard.cpp — PS2Keyboard library
Copyright (c) 2007 Free Software Founda -
tion. All right reserved. Written by Christian
Weichel <info@32leaves.net>Modified to
add F1-F12 keys and other minor correc-
tions by Glen Popiel — KW5GP.

By the time you
are up to 30

characters or so,
you will know the
first characters

very well and they
need not be sent

very often.

Final Words
I am not an expert on learning Morse code,
and built this CW Trainer mainly to learn
about the Arduino. For information on
learning Morse code, see ARRL’s “Learn-
ing Morse Code” page.6

I would like to thank my wife Jan, as well
as Ted Webb, W4NE, for reading this ar-
ticle and helping me improve it.

Notes
1Glen Popiel, KW5GP, Arduino for Ham Radio,

ARRL Item no. 0161, available from your ARRL
dealer, or from the ARRL Store. Telephone toll-
free in the US 888-277-5289, or 860-594-0355,
fax 860-594-0303; www.arrl.org/shop/;
pubsales@arrl.org.

2www.arduino.cc/en/main/software
3https://www.adafruit.com
4www.arrl.org/qst-in-depth
5www.g4fon.net
6www.arrl.org/learning-morse-code

