
36 May/June 2003

Jaders Prastgard 3265
63505 Eskilstuna, Sweden
leif.asbrink@mbox300.swipnet.se

Linrad: New Possibilities for
Communications Experimenters,

Part 3

By Leif Åsbrink, SM5BSZ

Linux and the Linrad software package.

Linrad is a computer program
that runs on PC computers un-
der the Linux operating system.

I have chosen to write this software
under Linux because under Linux, all
development tools are free. I want to
encourage others to play with the code
and make additions and modifications.
The disadvantage is that one has to
install Linux, which is seen as a ma-
jor obstacle by many potential users.
Installing Linux is quite simple on a
reasonably modern standard PC. It is
possible to run Linrad on a fast 486
computer, but it is not trivial to install
Linux on such old machines. The easy
way to install Linux is to use a com-
puter that can be booted from a CD.

Just insert a Linux distribution CD,
boot from it and follow the instruc-
tions—not really difficult, but if you
have never done it before, it helps a
lot to have someone more experienced
at your side.

To run Linrad, you must install
svgalib, a package that contains drive
routines for video boards. Unfortu-
nately, svgalib does not support all
board types; if the video board is inte-
grated on your motherboard, there is
substantial risk that svgalib will not
support it. The sound system under
Linux is not quite stable yet. Some
Linux distributions have sound that
works automatically, but most need
the installation of a new sound pack-
age. I am using OSS, which is not free;
but the free ALSA sound system
should be compatible, although I have
not been able to make it run myself.

Your sound package must support
the sound card in your computer,
which is often a problem with sound
cards integrated on the motherboard.
I am not an expert on hardware com-
patibility issues. Everything I have
tried has worked automatically but I
have had several reports about prob-
lems with integrated video or sound.
This article does not further concern
itself with Linux issues that are not
specific to Linrad.

Basic Functions of Linrad
Linrad displays a portion of the RF

spectrum on the computer screen. The
bandwidth (kilohertz) displayed is
determined by your hardware. The
operator can see all signals within the
on-screen passband and can tune to
any particular station by clicking it
with the mouse. The signal is then

ASBRINK.pmd 7/14/2003, 2:44 PM36

 May/June 2003 37

processed and presented to the opera-
tor via the headphones or as text on
the screen. Linrad is planned to sup-
port the following modes:
• CW (including weak-signal and

meteor-scatter)
• SSB
• FM
• Various digital modes

Linrad is still at a reasonably early
development stage. Only the weak-sig-
nal CW routines are implemented and
the only output is sound to the head-
phones. The weak-signal CW algo-
rithms are currently used for the other
modes, but they are not necessarily
optimal. When the user has pressed
the button, Linrad looks back in time
and decides what the optimum center
frequency is and how it changes with
time. An internal local oscillator is set
up and used to convert the frequency
of the incoming spectrum for the de-
sired signal to be centered in the final
passband selected by the user. This
AFC function makes it possible to use
narrower filters than otherwise pos-
sible on weak and unstable CW sig-
nals. The output of the final filter can
be used in several ways. It can be
• Routed directly to the headphones
• Coherently processed (only the com-

ponent of the signal that is in phase
with the carrier is sent to the loud-
speaker)

• Filtered through a narrower filter for
one ear or delayed.
All tricks I know of to enhance the

reception of weak signals are there.
For normal CW or SSB, one can

disable the AFC, set the bandwidth to
2 kHz and use Linrad as an ordinary
receiver. There is no AGC, however,
since an AGC is inappropriate for
weak-signal CW. When the algorithms
for other modes are in place, they will
have AGC and some interference-
fighting functions.

Linrad can combine signals from
two antennas. The spectrum presented
on the screen will then contain all the
signals from both antennas and when
the mouse is clicked, the two signals
are combined to maximize the desired
signal. This is an obvious strategy for
weak-signal CW, where the two anten-
nas are typically the two polarizations
of a crossed Yagi array. The effect of
combining the signals is identical to
that obtained when the crossed Yagi
array is aligned with the polarization
of the incoming wave. The user is then
presented with the best possible sig-
nal. This function is very useful for
EME. It eliminates loss of signal
caused by Faraday rotation. For other
modes, it may be better to combine the
two signals for minimum interference,

which can be done by hand (but which
will be automated in the future).

Combining two antennas with com-
plete freedom in phases and ampli-
tudes means electronic lobe control.
Someday, when the antenna signals
can be digitized more or less directly
at low cost, many more channels will
be extremely useful on crowded HF
bands, but Linrad has no provisions
for more than two channels yet.

Linrad contains a very special noise
blanker, such that Linrad can be used
to hear signals that are impossible to
receive with any other radio. Power-
line noise may have repetition rates
of several kilohertz. The interference
source is a spark gap in series with a
capacitor, that is, a defective insula-
tor in series with some good ones.
When the mains frequency is applied
at a high voltage, pulse trains are
emitted at twice the mains frequency.
Each pulse train typically consists of
10 pulses. A noise blanker must re-
solve the individual pulses well and
therefore the noise blanker must work
with a bandwidth of 10 kHz or more.
Many ham transceivers have such
blankers and they work fine until
some strong undesired signal is
present within the blanker bandwidth.
The Linrad blanker has automatic
notch filters that remove all strong
signals in the blanker passband. The
Linrad blanker finds out as much as
it can from both of the receive chan-
nels and subtracts the most probable
interference waveform from the in-
coming data. That means that much
less information is lost because only a
few data points at the peak of the pulse
must be blanked. The pulse tails are
accurately reduced to well below the
noise floor by the subtraction process.

The practical implementation of
Linrad is based on Fourier transforms.
The description above is what the al-
gorithms do, not the way they are
implemented. The Fourier transforms
are needed anyway for various reasons
and it saves a lot of CPU time to use
them for the actual processing.

Linrad has no prejudice about how
you want to use it or to the hardware
to which it is connected. The user must
select parameters that make a good
radio receiver from the building
blocks. If you ask for a 20-Hz filter that
rejects signals well only 0.1 Hz out-
side the passband, the processing de-
lay will be on the order of 10 seconds
for the filter. If a simple sine window
is chosen to save CPU time and large
decimation rates are selected, aliasing
spurs will degrade the dynamic range,
and so on. There is nothing wrong with
any of this, and it has nothing to do
with Linrad being a DSP system. The

propagation delay through a filter is
related to the Q regardless of whether
an analog or a digital implementation
is chosen. There may be perfectly valid
reasons to design a radio either way,
and Linrad allows you to do it. I have
tried to make the control functions so
that it is intuitive to set up a good,
normal radio receiver.

Linrad Block Diagram
The block diagram of Fig 1 illus-

trates signal flow through the differ-
ent processing steps of Linrad. Blocks
labeled fft and a number go from the
time domain to the frequency domain
via a fast Fourier transform routine.
Blocks labeled timf and a number go
from the frequency domain to the time
domain by an inverse-fast-Fourier
transform routine. Filtering and
resampling are extremely easy in the
frequency domain. One just removes
irrelevant parts of the spectrum to get
rid of undesired frequencies. The
smaller transform size automatically
reduces the sampling rate of the time-
domain function that follows.

There are no conventional DSP fil-
ters inside Linrad. The filter shapes
are not controlled by FIR filter coeffi-
cients. The actual processing is the
same, however; the same sums of prod-
ucts are taken, but in another order.
The window function used for the FFT
becomes one component in the effec-
tive filter function that is used to pre-
vent aliasing spurs in the resampling
transformation.

The theory may seem frightening;
but when actually operating Linrad, it
is not difficult to understand what is
going on. For example, you may try a
very bad (and very fast) FFT with no
window and few points. The resampling
spurs that then surround any strong
signal are easily seen. It is not difficult
to figure out what causes them and how
to remove them. It is exactly as in any
other radio. If the frequency conversion
reduces the frequency by a large fac-
tor, one has to put more effort into the
filters to avoid spurs. The same thing
happens when reducing the sampling
speed. A large reduction rate requires
a narrower filter because resampling
spurs come closer.

The processing is controlled by cer-
tain parameters. These parameters
fall into four categories:
• Hardware related parameters.
• Receive-mode related parameters.
• Operator’s current preferences for a

particular station.
• Dynamic parameters calculated by

Linrad itself.
The hardware parameters are set

for a particular hardware combination

ASBRINK.pmd 7/14/2003, 2:44 PM37

38 May/June 2003

as a part of the Linrad installation.
The receive-mode related param-

eters enable or disable certain func-
tions and control how much memory
Linrad will allocate for various pur-
poses. They also allow experimenta-
tion with transform sizes and other
things one usually would not like to
change when operating in a particu-
lar mode. What the parameters are
and how to set them up is described
in conjunction with detailed descrip-
tions of the different processing blocks
below. The operator’s current prefer-
ences are given to Linrad by mouse
clicks on the screen. Some parameters
like the angle and phase that control
how the two antenna signals are com-
bined can be either category 3 or 4. A
parameter of category 3 “Adapt” or
“Fixed” is used to select that. Most of
the real-time parameters are obvious.
There is a help function; pressing the
F1 key gives information about where
the controls are and how to use them.
The F1 key can also be used to get in-
formation about the mode related pa-
rameters in the mode-setup routine.

How to Install Linrad
First, you need a computer with

Linux installed on it. You then must
install svgalib-1.4.3 or later if it is not
already included in your Linux instal-
lation. You also must install nasm, an
assembler that reads Intel-style assem-

bly language exactly as written with-
out making all sorts of unpredictable
(to the innocent beginner) assumptions.
Linrad contains fast routines that use
the Intel multimedia instructions MMX
and XMM and they are written in
assembly language. Finally, you must
install Linrad itself.

Linrad, nasm and svgalib are all
available on the Internet. The Linrad
home page is at antennspecialisten.
se/~sm5bsz/Linuxdsp/Linrad.htm,
with mirrors at www.g7rau.co.uk/
sm5bsz/Linuxdsp/Linrad.htm and
nitehawk.com/sm5bsz/Linuxdsp/
Linrad.htm. You can find links to
svgalib and nasm there. At the Linrad
home page, you will also find links
with descriptions for the novice about
how to install the svgalib, nasm and
Linrad packages. Linrad comes only
as source code, so you must compile
and link it to obtain an executable
program. Everything is automated.
You need only issue two commands:
configure followed by make. This is
a normal procedure for the installa-
tion of a Linux package.

Before starting Linrad, you must
get sound going. Installing OSS, the
sound package from 4Front Technolo-
gies is always easy if your Linux dis-
tribution is modern enough to still be
supported. Some distributions have
sound included that works directly
with standard sound cards. Sound

under Linux is still a bit messy, but
presumably, ALSA will be a free and
well-working part of Linux in the near
future if it is not already.

My information about Linux sound
has a link from the Linrad home page,
but my information is getting old.
Since I have paid the OSS license, I
just go on using OSS without much
concern about what happens to Linux
sound in general. There is a Linrad
mailing list where users can inter-
change information. You will find a
link to it at the Linrad home page.

Setting Computer-Related
Parameters

When starting Linrad for the very
first time, the initial screen in text
mode may contain warning messages
about multimedia instructions that
you will never see again unless you
remove the parameter file par_userint.
Your hardware may support multime-
dia instructions while your Linux ker-
nel does not. Linrad allows you to use
multimedia instructions even if the
system flag says they are illegal. This
works fine under Mandrake 8.1. I do
not know if it is because Linrad is the
only software using the multimedia
registers, so it therefore does not mat-
ter whether these registers are
handled properly on task switching by
the kernel.

From the initial screen, you can go

Fig 1—The block diagram of Linrad with two receive channels and the second FFT. T1 and T2 are signals in the time domain from two
antennas 1 and 2. F1 and F2 are the corresponding signals in the frequency domain. Ta and Tb are linear combinations of T1 and T2 that
make the desired signal zero in Tb and consequently maximizes the desired signal in Ta. TaRef is a time function constructed fr om a
much narrower bandwidth than Ta. For Morse coded signals, it will be the CW carrier that is useful for coherent processing.

ASBRINK.pmd 7/14/2003, 2:44 PM38

 May/June 2003 39

Fig 2—Unwindowed Fourier transform in 512 points. The bin
bandwidth is 93.75 Hz and the near saturating signal occupies a
single bin only because the frequency is carefully adjusted to be
exactly on the center of an fft bin. This graph like Figs 3 to 8 are
Linrad screen dumps on which straight lines are drawn between
pixels for better visibility.

Fig 5—Unwindowed back transformation. Eight data points from
the unwindowed transform are used to compute the baseband
signal by back transformation. The time function comes in blocks
of eight points, and there is a discontinuity each time two time
functions are joined together. In this figure, the eight points are
centered on the strong signal. The baseband spectrum computed
from this time function shows these discontinuities as spurs,
which are only about 20 dB below the signal. The origin of the
transients is explained in the text.

Fig 4—A sine 4 window provides a nice spectrum with a peak
shape that is nearly independent of how the frequency is related
to the fft bins. The peak is about 2.5 bins wide at the 6-dB points.
This is because the window makes so many data points very
small so the length of time during which the window does not
attenuate very much is only 40% of the total transform time.

Fig 3—Same as Fig 2, but this time the frequency is adjusted to a
point right between two frequency bins. Unwindowed ffts provide
poor dynamic range and a poor shape of the spectrum peaks.

only to the video-mode selection where
one of the graphic modes reported by
svgalib can be selected. Linrad needs
256 colors and a minimum screen
width of 640 pixels. I recommend a
1024×768 screen. If you do not see the
video modes expected for your hard-
ware, something is wrong with svgalib.
It is possible to change the device driv-
ers included in svgalib by changing its
Makefile.cfg file and then recompiling.

After selecting screen size, you need
to select a font size. Start with the mini-
mum size. Finally, you are prompted for
mouse speed, where 64 is a suitable
starting value. If your mouse type is not
the one presented on the screen, you
need to edit the /etc/vga/libvga.config
file. After you hit ENTER, Linrad will
switch to the graphic screen you have
selected. If the screen looks okay, save
the settings you’ve made so far by press-

ing W. The screen you should have at
this point is the main menu. In case the
screen does not look okay, it is possible
to instruct svgalib to change the video
signals by editing the /etc/vga/
libvga.config file. You may also try an-
other screen size.

Setting the SoundCard
Parameters

Linrad assumes you always use the
same hardware to feed the computer
with digital data. Therefore, the sam-
pling speed and data format is set only
once, from the main menu. Press U to
set the soundcard parameters. If you
try something else, you will be
prompted to this setup anyway if pa-
rameters are undefined.

Linrad opens all device drivers it can
find. Some of them may be defective:
They may belong to some other sound

system than the one you actually have
running. There may be several sound-
cards in the computer. The user should
know which drivers belong to which
soundcard, but you may try what seems
reasonable. On a simple, standard sys-
tem where there are no alternatives,
Linrad selects the only possible alter-
native automatically.

After having selected the input de-
vice, you need to select the sampling
speed and the input format. Do not set
a higher speed than necessary.
Oversampling will load the CPU, but
it will not improve performance much.
When everything is set up, you may
check that the sampling speed is cor-
rect for your hardware by checking
how a strong signal is attenuated as
you tune it upward in frequency. When
it reaches the Nyquist frequency (half
the sampling frequency), it is folded

ASBRINK.pmd 7/14/2003, 2:44 PM39

40 May/June 2003

back as an alias signal that appears
to go down in frequency while the real
signal is still tuned upward. The sam-
pling speed should be set high enough
to make the alias signal attenuated
well enough when it has reached into
the desired passband. The Linrad
setup dialog is intended to be reason-
ably self-explanatory, and the Linrad
homepage has links to detailed infor-
mation.

Parameters That
Depend on Receive Mode
The First Group: fft1

There are several distinctly different
modes of operation for Linrad. As of this
writing, only the weak-signal CW mode
is partly implemented. It is possible to
set weak-signal-CW parameters to get
a system that is reasonably well
adapted for SSB or normal CW. These
modes can be selected from the main
menu so you can switch quickly be-
tween modes, but the code actually ex-
ecuted remains that for weak-signal
CW, until dedicated routines for the
other modes are in place.

The total number of receive-mode-
dependent parameters is quite long.
The mode-dependent parameters are
set from several screens; you are
prompted to them when running a
new mode for the first time, but you
can also go there from a menu. Each
screen controls its own part of the
block diagram shown in Fig 1. By sim-
ply pressing ENTER at each of the
parameter screens, you will select de-
fault parameters that will usually pro-
vide a reasonable starting point.

The first processing block has these
parameters:
• First FFT bandwidth
• First FFT window (power of sine)
• First forward FFT version
• First FFT storage time (s)
• First FFT amplitude
• Enable second FFT

These parameters control block fft1
in Fig 1. The bandwidth and the win-
dow control the size of the FFT. It is
in powers of two, so you do not get ex-
actly the bandwidth specified by the
parameter. The window controls the
shape of the filter associated with each
FFT bin. A higher value yields a wider
bandwidth in FFT bins but steeper
skirts; a larger FFT may be required
to get the desired bandwidth in hertz.
A higher value also causes more CPU
processing load because transforms
must overlap more. The different FFT
implementations may run at different
relative speeds depending on proces-
sor and memory architecture. The stor-
age time is important only if the sec-
ond FFT is disabled. It tells Linrad

how much memory to allocate for old
transforms; they are used for AFC and
spur rejection in the absence of the
second FFT. The amplitude parameter
can be used to fool Linrad. This, in case
the signal level is too high, causing the
noise floor to be treated as a strong
signal—something likely to happen if
Linrad is used to process an ordinary
.WAV file.

When the second FFT is disabled,
the output of fft1 is routed directly to
timf3, disabling the noise blanker. The
input to fft1 is the raw data from the
sound card or raw data from a file. The
input may be one or two channels in
real or complex format as defined by
the sound-card parameters or the raw
data file. In the block diagram of
Fig 1, T1 and T2 represent the two
time functions from two antenna sig-
nals. The help key, F1, can be used to
get some information about the effects
of these parameters.

When choosing bandwidth and win-
dow, you build the basic filter used in
the fft1 block. Figs 2 and 3 show what
happens when the window parameter
is set to zero (no window). These fig-
ures were produced by running Linrad
with a direct-conversion receiver at
2.5 MHz while sending a very pure
sine wave at 2.509 MHz into it. In
Fig 2, the frequency is adjusted for the
signal to be located exactly on one fre-
quency bin while Fig 3 shows what
happens when the signal is located
right between two bins. The figures are
unaveraged power spectra of size 512.

The great difference between Figs 2
and 3 results because the Fourier trans-
form is the spectrum of a signal that is
obtained when the 512 samples of the
input data are repeated continuously.
When the frequency matches a bin ex-
actly, the first point will fit exactly to
the sine wave when placed as point 513
for the next repetition. When the fre-
quency is exactly halfway, point 1 will
not fit at all when placed as number
513. There will be a large discontinu-
ity, and that discontinuity has signal
energy over the entire frequency spec-
trum.

Unwindowed FFTs are very fast, but
they do not allow a large dynamic range.
When a group of bins is picked to make
a rectangular filter, the stop-band at-
tenuation will only be about 50 dB for
a 512-point FFT. With larger trans-
forms, the situation improves because
the discontinuities repeat less often; but
the phenomenon is still there.

The way to cure the problem is to
use a window. Fig 4 shows exactly the
same signal as Figs 2 and 3 but here
a sine4 window is applied. With such
a high-order window, it does not mat-
ter whether the signal is centered on

a bin or not. The points toward the
ends of the time sequence are all ex-
tremely small, so the discontinuity is
very well suppressed. Notice that the
maximum is much wider. There are
three points on the peak now, so a
2048-point FFT will be necessary for
the same inherent bandwidth.

When Linrad is used as a radio re-
ceiver, a window power of two or three
is sufficient. When using it as a high-
performance spectrum analyzer with
the first FFT generating broadband
spectra, however, windows up to a
power of nine may be used. That
makes it possible to study extremely
low levels of unintended sidebands on
the test signals, if the hardware has
the quality to allow it. The hard-
ware used to produce Figs 2-4 rep-
resents the unit described at
antennspecialisten.se/~sm5bsz/
Linuxdsp/rxiq/opt2500.htm. The
unit can be purchased from www.
antennspecialisten.se.

The choice of bandwidth and filter
depends on what you are going to do
with the output data. When the sec-
ond FFT is disabled, the output is
displayed and is used to produce a fre-
quency-shifted signal in the time do-
main by timf3. When the decimation
rate for timf3 is low, the alias spurs
from the timf3 point-decimation pro-
cess are far from the desired frequency.
Then the basic filter skirts need not
be very steep to suppress alias signals
well. When the decimation rate is high,
the filter requirements are higher.
High decimation rates allow the com-
puter to do advanced processing on
many signals simultaneously. When
the hardware is an ordinary SSB re-
ceiver, the dynamic range within the
SSB bandwidth would likely be below
50 dB anyway, and then it does not
matter much what window you choose.

Bandwidth selection depends on a
compromise between the resolution
you desire on the screen and the time
delay you are willing to accept. If you
want 1-Hz resolution with a sine4 win-
dow, each transform spans about four
seconds and a corresponding time de-
lay is unavoidable. A high resolution
is required to make the AFC follow
extremely weak and unstable CW sig-
nals well enough to use coherent pro-
cessing. AFC is not required for stable
signals, and then there is no need for
high resolution. A bandwidth of 20 Hz
gives good visibility for CW signals
on the waterfall graph with a modest
processing delay. By setting a large
bandwidth for fft1, it is possible to
make very fast waterfall graphs from
which you can read high-speed CW
signals directly.

When the second FFT is enabled,

ASBRINK.pmd 7/14/2003, 2:44 PM40

 May/June 2003 41

the output of fft1 is used to produce
notch filters for all strong signals in
the passband. There is no reason to
select a narrow bandwidth, but good
skirt steepness is required. Typically,
200 Hz and sine3 will fit high-perfor-
mance broadband hardware. If you are
going to select a very narrow band-
width for the second FFT, it may be a
good idea to select a smaller band-
width for fft1. The ratio of fft1 to fft2
has some influence on how deep the
notches for strong signals must be. If
your computer is capable of making
the fft2 bandwidth 0.2 Hz, it would be
unlikely to have problems making the
fft1 bandwidth 10 Hz or so, particu-
larly since a less-demanding window
would then be required.

Linrad has oscilloscope functions
that allow you to see the time func-
tions. With a signal generator, you may
check the spurious responses that oc-
cur as a result of inadequate filters
both in the time domain and in the
frequency domain. With a poor filter,
you will easily see the resampling
spurs with the second FFT disabled.

The upper right part of Fig 5 shows
the fft1 spectrum in 256 points from 0
to 48 kHz of the same signal as used
for Figs 2-4. No window is used.

The spectrum is frequency shifted
to place the desired signal at zero fre-
quency. The baseband signal is then
filtered out by multiplying the trans-
form with a nicely rounded filter func-
tion. For Figs 5-8, this filter is in eight
points. The baseband signal is then
obtained from an inverse FFT. The fil-
ter makes the 248 points outside the
baseband equal to zero, so there is no
reason to do the inverse transform in
more than eight points. This is how
decimation comes in, naturally. The
two sine waves at the left are the re-

sulting complex-time function. This is
the baseband signal I and Q for the
selected frequency. These sine waves
are made up from segments of eight
points, each spanning the same time
as one frame of fft1. Since the number
of points is reduced by a factor of 32,
the bandwidth is reduced from 48 kHz
to 1.5 kHz with a sampling speed of
1.5 kHz. The bandwidth is actually
reduced a bit more because of the
rounded shape of the filter used to pick
the eight points. The lower-right part
shows the baseband spectrum in 256
points. The signal itself is at 9200 Hz
and the resampling spurs are sepa-
rated by 187.5 Hz, the inverted value
of the time for one fft1 frame. The ac-
curacy of this spectrum is poor to-
wards the ends, the screen shows the
spectrum divided by the filter func-
tion, now expanded from eight to 256
points and this division becomes divi-
sion by zero at the ends.

The resampling spurs show up in
the time function at the left side of
Fig 5 as spikes that repeat at an inter-
val of eight points. The explanation of
why these spikes occur is that an
unwindowed FFT has to use all of the
frequencies to reproduce a sine wave
in case it is not exactly at one of the
bin frequencies. That is what we see
in the fft1 spectrum, the signal is at
about 70 dB or more at all frequencies.
When only eight points are selected,
the inverse transformation will not
give back the original signal; it gives
something that differs at the beginning
and end of the time interval. Succes-
sive transforms do not fit well to each
other so spikes are generated. The way
to avoid this problem is to use inter-
leaved transforms and not use the end
regions for the inverse transform. The
associated spectra are then calcu-

lated with windowed transforms.
Fig 6 is the same as Fig 5 except

that here, the 1.5-kHz segment used
for the inverse transform is centered
3 kHz above the strong signal, which
is now outside the range used for the
inverse transform.

As can be seen in the main spec-
trum, the level of the unwindowed
transform is at about 85 dB at 12 kHz
and that signal, which is an artifact,
shows up as spurious signals sepa-
rated by 187.5 Hz.

What we see in Fig 5 and Fig 6 is
what happens when resampling is done
without an appropriate anti-alias filter.
As was pointed out, with appropriate
references, by Gerald Youngblood,
AC5OG, (QEX, Nov/Dec 2002, p 31), fil-
tering in the time domain and filtering
in the frequency domain are equivalent.
The problem is that the filter used to
generate Figs 5 and 6 was not the nicely
rounded filter in eight points. It is the
sum of the output from eight filters
(with frequency responses like the
unwindowed FFT) summed together
with weights according to the nicely
rounded function.

Fig 6 clearly shows what is required
to suppress the alias spurs. By using
only the four center points of each trans-
form and calculating twice as many in-
terleaved transforms, we can construct
a baseband time function from the in-
verse transform that does not include
the end discontinuities. Linrad does it
by applying a window because the
power spectrum is needed for AFC, spur
cancellation and to produce graphs. The
transforms are interleaved for the 3-dB
points of successive window functions
to match the same points in the time
function. To avoid problems related to
the AGC (the gain may change between
two transforms), Linrad makes soft

Fig 6—Unwindowed back transformation. Same as Fig 5 but this
time the eight points used for the baseband are centered 3 kHz
above the strong signal. The signal itself, the sine and cosine is
now outside the baseband, but the discontinuities are very
strong. As can be seen from the main spectrum, they are present
at all frequencies.

Fig 7—A sine 2 window makes the spectrum look much better.
With the high dynamic range of the hardware used to produce
these images, the sine 2 window is not good enough to bring the
discontinuities below the noise floor with a small transform size
like 256.

ASBRINK.pmd 7/14/2003, 2:44 PM41

42 May/June 2003

transitions between successive inverse
transforms. A sine-squared window pro-
duces the filter function shown in
Fig 7. When the baseband is filtered out
by weighting together eight such filters,
the alias signals are reasonably well
suppressed as can be seen in Fig 7, both
in the baseband time function and its
spectrum.

By selecting a longer fft1 transform,
it is possible to suppress the alias
spurs below any desired level. This is
done by setting the “First FFT band-
width” parameter narrower or by set-
ting a narrower window function by
making the “First FFT window (power
of sine)” parameter larger. Fig 8 shows
what happens if a sine4 window is cho-
sen for a size-256 fft1.

It is self-evident that one can avoid
spurs completely by use of a transform
size and window shape that reduces
contributions from undesired signals
to well below the noise floor for all data
points used in the inverse transform.
When a large baseband bandwidth is
desired, the offending signal may be
included among the data points used
for the inverse transformation. This
will be perfectly okay if all data points
containing energy from the undesired
signal are picked with exactly the same
amplitude. As already mentioned
above, the frequency range to be back-
transformed is selected with a nicely
rounded filter, which may lead to un-
equal amplitudes for the different data
points on a strong signal. By selecting
the bin bandwidth of fft1 much nar-
rower than the baseband bandwidth,
one can make the difference in ampli-
tude small, thereby placing these spurs
below the noise floor.

When the second FFT is enabled,
all the frequency bins of fft1 are in-
verse transformed. Frequencies where
strong signals are present are attenu-
ated, however, and that creates a simi-
lar problem to the one just described.
If the window or fft1 size is inad-
equate, spurs will show up in the
waterfall graph. By injecting a near-
saturating signal into the antenna
input, one can verify that such spurs
are invisible and well below the noise
floor of the hardware in use.

The Second Group:
AGC, timf2 and fft2

These blocks are present only when
the second FFT is enabled. They are
controlled by the following param-
eters:
• First backward FFT version
• First backward FFT attenuation N
• Second FFT bandwidth factor in

powers of two
• Second FFT window (power of sine)
• Second forward FFT version

• Second forward FFT attenuation N
• Second FFT storage time

When the second FFT is enabled,
the main purpose of the first FFT is
to find the frequencies on which strong
local signals are present. Such fre-
quencies are attenuated by the AGC
to the extent that the strong signals
will not overflow when further pro-
cessing is done with 16-bit arithmetic.
The AGC block splits the output of fft1
into two groups. One contains the nar-
row-bandwidth signals that have been
located in fft1, F1s and F2s in Fig 1.
The other essentially contains the
noise floor from the rest of the spec-
trum, F1w and F2w in Fig 1. The two
sets of fft1 transforms are back trans-
formed in the timf2 block to produce
two sets of time functions; T1s and T2s
contain strong signals, while T1w and
T2w contain weak signals.

The noise blanker operates on T1w
and T2w only. That means that it op-
erates on a signal that has passed
notch filters removing all strong sig-
nals that otherwise would have dis-
turbed the operation of the blanker.
The Linrad noise blanker is far more
sophisticated than a conventional
noise blanker and will be described
separately.

Once noise has been removed from
the weak signals, weak and strong sig-
nals are added together and sent to
the fft2 block. That block again con-
verts the signals to the frequency do-
main with the output signals F1 and
F2 as shown in Fig 1.

Since the AGC ensures that the
data will fit into 16 bits, selecting the
first inverse FFT implementation that
uses MMX multimedia instructions
saves a lot of CPU time because MMX
is about three times faster than float-
ing point. Likewise, the second FFT
should be set to use MMX if the pro-
cessor supports it.

Since some processing is designed
to use 16-bit numbers, it is essential
to make sure that the signal levels are

set properly. The “First backward FFT
attenuation N” and “Second forward
FFT attenuation N” parameters set
the signal levels by telling how many
of the FFT butterfly loops should con-
tain a right shift. Each right shift di-
vides the signal level by two, which is
attenuation by 6 dB. Gain set too high
will cause saturation, while gain set
too low will degrade the noise floor by
the addition of quantization noise. For
details, follow the link “set digital sig-
nal levels correctly” on the Linrad
home page.

The parameter “Second FFT storage
time” tells how much memory to allo-
cate for old frequency-domain data. If
the computer has enough memory, it is
advantageous to allow a long time here.
The AFC will be limited to the time in-
terval specified here, and if the com-
puter has plenty of memory, there is no
reason to not use it.

The Third Group: AFC
and Spur Cancellation

When this group is enabled, a group
of parameters defining maximum AFC
lock range, maximum number of spurs
to cancel and so forth, must be selected.
These parameters essentially allocate
memory and set the upper limit for the
operator’s current preferences that he
can select with the mouse. The AFC will
lock to the strongest signal within the
specified range, and to avoid locking to
stronger undesired signals close to the
desired one you may need to use a nar-
row lock range.

The functions in this group use
the frequency-domain data from the
entire spectrum. The input is the out-
put of fft2 if enabled, otherwise the
input is the output of fft1. The third
group will also contain the automatic
Morse-code-to-ASCII translation, but
this part is not implemented yet.

The Fourth Group: Baseband
Processing

This is the last group of mode-

Fig 8—A sine 4 window
is enough even on a
small transform like
256 to make the near
saturating signal
narrow enough not to
enter the baseband
even though the
baseband starts only
1.5 kHz above the
strong signal.

ASBRINK.pmd 7/14/2003, 2:44 PM42

 May/June 2003 43

dependent parameters. They are:
• First-mixer bandwidth reduction in

powers of two
• First mixer number of channels
• Baseband storage time
• Output delay margin
• Output sampling speed
• Default output mode
• Audio expander exponent

The first-mixer bandwidth reduc-
tion is simply the decimation rate in
the frequency-shifted inverse transfor-
mation that produces the baseband
signal as discussed in conjunction with
Figs 5-8. By selecting a large decima-
tion rate, one saves CPU time and
memory, but the baseband bandwidth
is reduced at the same time.

The baseband noise blanker between
timf3 and fft3 should operate at a band-
width that is well above the bandwidth
of the desired signal. As long as it is
not implemented, there is no reason to
use baseband bandwidths that are more
than two times larger than the band-
width of the desired signal. The factor
of two is needed to accommodate a fil-
ter function.

The way the baseband signal is ex-
tracted from the broadband input sig-
nal is very efficient, and it is possible
to process a large number of signals
simultaneously. At present there is no
reason to select more than one chan-
nel because only one channel can be
sent to the loudspeaker/headphones.
More channels will be useful when the
Morse-code-to-ASCII routines are in
place. For the other parameters, press
F1 with the mouse cursor on one of
them to get information.

The Receive Screen
Once the mode dependent param-

eters are set, Linrad enters receive
mode and presents the receive screen
to the user. The following windows are
present:

• Main spectrum and waterfall
• High resolution spectrum
• Baseband spectrum
• AFC window
• Polarization control
• Coherence graph
• EME window
• Frequency control
Buttons in each window allow the

user to change processing parameters.
The spectra can be zoomed in and out
and the user may move the windows
around and set the sizes of the differ-
ent spectra as desired.

The basic operation of Linrad is ex-
tremely simple. Move the mouse cursor
onto a signal that is visible in the main
spectrum and click the button. The cor-
responding signal, filtered through the
baseband filter, will immediately be

sent to the loudspeaker. The shape of
the baseband filter can be modified with
the mouse and the baseband frequency
is shifted to the desired audio frequency
by setting the BFO frequency.

All the processes are more or less
automatic; but to take full advantage
of them, one needs a basic understand-
ing of how they work. Subsequent
articles will describe some of these
processes in detail. Some information
can be obtained with the F1 help key,
and there is a lot of information

available at the Linrad home page.

Summary
This article has concerned itself with

the coarse structure of Linrad and its
block diagram. The significance of win-
dow functions for dynamic range has
been illustrated; this problem is always
encountered in SDRs when a signal is
resampled at a lower speed. Subsequent
articles will focus on how to use the
special features of Linrad to improve
receiver performance. !!

Noble Publishing
Corporation
630 Pinnacle Court
Norcross, GA 30071
USA

4 W A Y S T O O R D E R

CALL 770-449-6774 · FAX 770-448-2839

E-MAIL orders@noblepub.com

INTERNET www.noblepub.com

N O W A V A I L A B L E

O r d e r o n - l i n e n o w !

www.noblepub.com

The AMW ArchiveThe AMW Archive
Get your electronic archive of articles previously published
in Applied Microwave & Wireless magazine today!
fi Over 500 articles from 1989 to 2002
fi Over 3,000 pages of technical content
fi Easy-to-use interface
fi Comprehensive search capabilities
fi Printable articles using Adobe“ PDF format
2003, CD-ROM, ISBN 1-884932-37-1
NP-56 . $79.95

IIdeasIdeas

Designs
Designs

Concepts
Concepts

TTransmission Line Transmission Line Transformersransformers
Jerry Sevick
This book remains the definitive text on the subject of transmission line trans-
formers for high frequencies.
2001, 4th edition, 312 pages, ISBN 1-884932-18-5
NP-9 . $39.00
TheorTheory and Practice of y and Practice of
TTransmission Line Transmission Line Transformersransformers
Jerry Sevick

Sevick divides TLTs into four classes: TLTs
with ratios of 1:1, 1:4, less than 1:4 and greater
than 1:4. The first two sections in this course cover 1:1 baluns and 1:4
baluns and ununs, as discussed by Guanella and Ruthroff. Additional sec-
tions review TLTs with ratios less than 1:4 and greater than 1:4, such as
1:6, 1:9, 1:12. The course concludes with a discussion of information on
diode mixers and power combiners/splitters.
2002, CD-ROM, ISBN 1-884932-33-9
NP-52 . $99.00

S a v e 1 5 % ! S a v e 1 5 % !
Book + CDBook + CD-ROM-ROM

$115$115

View and shop from our catalog at2003

EASY ACCESS TO RF and MicrowaveRF and Microwave
Design ResourcesDesign Resources

ASBRINK.pmd 7/14/2003, 2:44 PM43

