
March 1999 49

E
mbedded microprocessor devel-
opment can seem to be an ex-
pensive task, requiring lots of
specialized equipment that is

beyond the means of most amateurs. Al-
though developing projects using PIC1 mi-
croprocessors can be expensive, it doesn’t
have to be. PIC development can be done with
just a handful of parts: an EPROM eraser,
some kind of programming language and a
low-cost PIC programmer.2 That’s an exact
list of the equipment that I use. I don’t have
access to specialized professional equip-
ment, but I do develop many useful projects
with PICs.3,4

Why Pick PICs?
PICs are an enabling technology. All

those logic, control, communication and dis-
play functions that our projects need can be
packed into a single chip—a chip that can be
reconfigured at your pleasure! Similarly, we
can add features to our projects that make
them even more professional and easier to
operate.

The simplest, popular PICs are contained
in a single 18-pin package, have 13 I/O pins
and need only an external clock for opera-
tion. For usefulness, the PIC is truly the ’90s
version of the venerable 555 timer!

Most of the PICs you likely will be
using are flash EEPROM or windowed
EPROMs. This means that they can be pro-
grammed over and over again. In fact, the
legs on my frequently used PICs break off
long before the write/erase cycle limit of the
PIC is ever reached! In higher-volume com-
mercial applications, PICs are available at
lower cost in a one-time programmable
(OTP) version. The OTP version allows
the code to be burned into the PIC once. Ob-
viously, this “cheaper” device wouldn’t be
cheaper to use when you’re developing
new code, but when the code is stable, a

By Steve Hageman

1Notes appear on page 51.

commercial manufacturer may choose to
use OTP versions to reduce cost.

Basic PIC Uses
I break PIC applications up into two over-

lapping categories:

• Stand-alone applications such as CW
keyers, ID modules, etc. These PIC appli-
cations use the device as a programmable
logic array (PLA). That is, the program
you write for the PIC can take the place of
hundreds of discrete logic gates. Such
projects usually stand by themselves and
have simple user interfaces that may in-
clude an LCD (see the sidebar “Simple
Project Displays”) and some user-interac-
tion switches. My 2-meter PC-controllable
FM receiver (see Note 4) is an example of
this type of application.

• The other application category involves
using the PIC as a PC interface. Because
the PIC can communicate easily using
RS-232 connections, you can use a PIC as
a sophisticated “programmable UART.”
This follows the electronics industry trend
toward virtual instruments (VI), that is,
electronic equipment that does not have a
physical front panel, but a communica-
tions interface to a computer that pro-
cesses the instrument’s data and displays
the instrument’s virtual front-panel con-
trols. My Personal Network Analyzer (see
Note 3) is one example of such a project.5

The two PIC-usage categories may over-
lap, as they do in my 2-meter receiver. That
project uses a PIC to operate a user interface,
including an LCD, knobs and switches. When
it detects the presence of an RS-232 connec-
tion, it operates like a virtual radio with a PC
controlling the receiver.

PC Control of a Virtual Instrument
The key to operating a virtual instrument

is the program running on the PC. MS-DOS is
a simple environment in which to operate,

PIC Development
on a Shoestring
Are you itching to develop PIC-based
projects yourself? Here are some
ideas on how to go about it.

but the availability of DOS-based develop-
ment tools is nonexistent now, except for
shareware. This leaves Windows—and the
tools here are quite good. Microsoft’s Visual
Basic is a very reliable and useful develop-
ment tool. You may be able to find someone’s
old copy of Visual Basic 3 for Windows 3.1 or
95 development. Or, if you want to start with
the latest 32-bit versions, use Visual Basic 5
or 6 for Windows 95/98 programming.

Because each PC-based language uses its
own way of controlling the serial port, it’s
impractical to list them all here. But, the se-
rial port is a commonly supported communi-
cation method under DOS and Windows, so
it’s a part of all these languages. Check the
language manuals and help files for more
specific information.

For an example of the PIC code that
controls a virtual instrument via RS-232, visit
my Web page describing the Personal Net-
work Analyzer project and download the
PIC source code.

Which PICs to Use?
At first, you seem to be faced with a bewil-

dering array of PICs from which to choose.
Your choice of which PICs to use may well
start with the language you’ll be using and/or
what your programmer can support. I use four
devices for all of my fun projects: the mid-
range 16C6x, 16F84 and 16C7x; this keeps
costs down and ensures I will always have
devices available when I need them. Here are
the reasons I chose these devices:

16F84—A low cost 18-pin device with
moderate memory size (1 kB). This device
is used for basic control applications that
won’t be large, need analog input (ie, an
ADC) or use a lot of I/O pins (My Web site6

shows several robots that my kids and I have

Ready for another programming
assignment! My shoestring development
station includes a Microchip programmer,
an EPROM eraser and, of course, a PC.

50 March 1999

Figure 1—My universal RS-232 debugging cable simply clips to the circuit I’m testing.
Three leads are all that is required to get bidirectional communication from a PIC
breadboard to any PC terminal program.

built with this device). This is the most
popular hobbyist PIC of all time (an older
device was called the 16C84). This device
uses flash memory and does not need to be
erased in an EPROM eraser before it can be
reprogrammed.

16C71—Like the 16F84, but it also has a
built-in four-channel, 8-bit ADC. This device
is used where I need to get analog signals into
the PIC for control applications (such as the
Personal Network Analyzer; see Note 3). The
newest replacement to this device is the
16C711.

16C63—This device is in a 28-pin pack-
age, contains one five-bit I/O port and two
8-bit I/O ports. The device also has a hard-
ware UART and 4 kB of memory. I use this
device where I need the execution speed of
the built in UART, the extra ports or the 4 kB
of memory for large, complicated projects.

16C73—Like the 16C63, but also has a
built-in, four-channel, ADC like the 16C71. I
use this device in all the applications a 16C63
would be used for, but also need an ADC.

With just these four devices, I can keep
my investment low and put together nearly
any project I likely have the time for! To pro-
gram these PICs, I use a Microchip PicStart
programmer.7 It’s a bit on the expensive side,
but it can program all of the currently avail-
able PICs.

How to Program a PIC
Programming a PIC is no harder than writ-

Figure 2—This simple adapter cable allows easy debugging of PIC applications with any
PC-based terminal program. Employing clip leads makes it easy to do on-the-spot
debugging and probing of the inner workings of your PIC programs. You will want to
make one of these early on, because you won’t feel like making it when you really need it!

ing a small program for a PC; the exact se-
quence of steps is different, but it’s not diffi-
cult to learn. If you want to program in as-
sembly language, the tools are free from
Microchip.8 Programming in higher-level
languages such as BASIC and C can be ac-
complished using low-cost (under $100)
tools.9,10 These higher-level language tools
are usually referred to as compilers because
they take the high-level statements and com-
pile them into processor-specific machine
language. I program my projects in C, a high-
level language that keeps the code close to
the hardware. This is the perfect language to
use to talk to a PIC because controlling hard-
ware is the whole idea. However, BASIC is
also a viable language to use for amateur
projects.

Once a program is written (in whatever
language you have chosen), the assembler
or compiler generates a binary image of the
target PIC’s memory. This image file is usu-
ally called a hex file, because it is in a format
called the Intel hex 8 format. You don’t need
to know the technical details of this format
for successful application of the PIC.
Microchip’s tools produce this format, so
most of the low-cost programmers available
support it as do the compiler manufacturers,
and it’s become the de-facto standard for
PICs. All you really need to know is how to
load the image file into your programmer
and download it to your PIC, usually a
simple task.

Debugging an Application
Debugging is where the fun starts—and

stops, sometimes! The need for debugging can
arise for two basic reasons: Because the pro-
gram doesn’t appear to work as you planned,
or because you think up features to add as
you’re writing the programs. Professionals
may debug with expensive in-circuit emula-
tors (ICE systems) that allow stepping
through the code line by line while connected
to the target hardware. Although this is the
most effective way to see how the program
actually works from a time standpoint, its cost
is usually beyond the means of most amateurs.

Debugging Tip 1
I use a slightly less time-effective debug-

ging method than ICE, but it’s a lot friendlier
to your pocketbook! Most applications are
best built in stages. Each stage adds a func-
tion, and I fully test that function before add-
ing the next one. This way, the potential prob-
lem areas are kept small. If the program stops
working after a new stage is added, then I
know to look at the new stage first! Some-
times problems can be found by observing
the action of the hardware and looking at the
source code again. More often than not,
you’ll spot an obvious error and be able to
correct it.

In fact, the programs for my 2-meter re-
ceiver project are built exactly this way. In
past projects, I have used LCDs, so I reused
this already-tested code to display program
output when testing the other hardware code
(described later). I had also used the PIC’s
built-in ADC and RS-232 UART, so these
controlling subroutines were reused. I had not
used an interrupt-driven rotary encoder be-
fore with a PIC, so I wrote some simple pro-
grams to experiment with how to best do this.
I even used a 16C84 processor for this devel-
opment because I had a breadboard already
built up and wanted to reuse that also. When
I had the encoder working correctly, I added
the switch inputs and worked on debouncing
routines and getting the RC networks con-
nected to these switches properly.

When all the lower-level hardware-con-
trol routines were built and tested, I started
building the final application safe in the
knowledge that when my program said “read
a debounced switch,” if the program didn’t
work, I knew it was the main program’s logic
and not the previously written and tested sub-
routines. This is, in fact, my first approach to
developing PIC applications: Work on the
hardware-control stuff in small increments.
It saves time in the long run.

Debugging Tip 2
My second approach to debugging on a

shoestring is simply to keep five or more PICs
in an EPROM eraser at all times. Doing so
allows me to execute almost instantaneous
write, compile, program, test cycles. Many
times during development, I may work with a
piece of code for only a few minutes before I
decide it needs improvement. Sometimes, it
just doesn’t run at all! Being able to immedi-
ately get another blank PIC into the pro-

March 1999 51

grammer’s socket keeps the development
cycle short and productive (much like it is
on a PC). This also saves time in the long run
at the minor expense of having a few extra
PICs lying around.

Debugging Tip 3
My third and last debugging tip is to use

an RS-232 link to a PC during development,
to show what is happening inside the PIC
during program execution. In the early stages
of development, I usually use the LCD (if the
project has one) to show what is happening in
the program. I write to the display much like
you would use PRINT statements in BASIC
to print the values of internal variables, or
just to print out where the program is while
it’s running.

As I get farther along in writing the
software, I’ll likely have the LCD tied into the
main program, so it’s not convenient to use
the LCD for debugging any more. At that
point, I switch to using an RS-232 link to a
PC. All of the better programming languages
have built-in RS-232 serial commands that
can be used on PICs with or without UARTs.
My compiler recognizes nonUART devices
and automatically adds software routines that
perform the RS-232 input and output. These
routines may take up a little of your code
space, but they really help debugging.

In its simplest form, an RS-232 link only
uses one PIC pin. The C compiler I use can
configure any I/O pin for RS-232 I/O, and
there is usually one pin available for debug-
ging purposes. The PIC’s RS-232 pin is con-
nected to the PC’s RS-232 receive pin, a
ground wire is added to connect the PC’s
ground to the PIC’s and off we go! (See Fig-
ure 2). Using any terminal program (Windows
or DOS, configured for the right number of
bits and data rate), the data from the PIC can
be viewed as the program executes. If you
need to pause the program at various points,
you can add an RS-232 input to another of the
PIC’s pins and use it to have the PIC wait
until it receives a character from the terminal
program.11

Using RS-232 for debugging really rein-
forces Debugging Tip 2. That is, you will
probably be making rapid changes to the pro-
gram as you move debugging PRINT state-
ments around, and you want to keep your ef-
ficiency high. You won’t want to wait while
another PIC is erased before trying the next
experiment. So, keep plenty of PICs roasting
in the EPROM eraser at all times! I’m not
suggesting that you keep hacking code until
it seems to work! Even the most experienced
professionals learn by doing. I’m saying that
while “learning more by doing more,” you
keep your debugging efficiency high.

For your next project, you can probably
reuse much of the code that you developed
for previous projects and speed your devel-
opment time even more. As I mentioned ear-
lier, that’s how I develop many of the pieces
for my projects.

Notes
1Microchip Technology Inc, 2355 W Chandler

Blvd, Chandler, AZ 85224-6199; tel 602-786-

Figure B—These simple-to-use
character-based displays really give
a professional appearance to our
projects. They can be programmed
serially themselves, or connected
directly to a PIC through six I/O pins.

Figure A—By using an LCD’s four-bit
nibble mode, the number of I/O pins
required for operation are reduced to
six.

Simple Project Displays
You may notice many articles nowa-

days that include LCDs. Available from
many manufacturers, LCDs are really
complete display subsystems.* They
are commonly programmed in four-bit
nibbles and can display the full upper-
and lowercase ASCII character set.

Different display models are avail-
able ranging from 16 character and
one line to 40 characters and four
lines. LCD costs start at under $20.
The displays are 14 pin devices, with
11 pins to deal with when program-
ming. LCDs have an 8-bit mode and a
4-bit mode. In 4-bit mode, you only
need four data lines and two control
lines to completely control the display;
see the accompanying figure. Using
the four-bit mode saves on I/O pins,
which with a PIC, is usually important
(see Figure A).

Although it is relatively easy to pro-
gram these displays, it can be made
even easier by buying one of the many
add-on serial adapters.† These serial
adapters allow the display to be ac-
cessed with serial bit streams from a
single PIC pin. Interestingly enough,
these serial adapters are themselves
usually built with PIC microprocessors!

Using one of these displays boils

down to three simple functions:
• Initialize the display; this clears the

entire display.
• Set the line (ie, the first, second, etc)

to write to. This also sets the cursor
to the beginning of the line.

• Write text to the display. You can write
single characters or entire strings to
the display. The display itself takes
care of positioning each character.

Translated into C code, these state-
ments look like this:

init_lcd();
// Initialize and clear the LCD Display

first_line();
// Set cursor to first line

write_lcd(“Hello World...”);
// Write something

second_line();
// Set cursor to second line

write_lcd(“QST is the best”);
// Write something else

The result can be seen in Figure B.
These are exactly the functions I in-

clude in my PIC projects that use the
LCDs. For an example of the code
used to drive a display, see my
2-meter FM receiver Web page.‡
—Steve Hageman

*For example, see the Optrex character dis-
plays available from Digi-Key and others
(Digi-Key Corp, 701 Brooks Ave S, Thief
River Falls, MN 56701-0677 tel 800-344-
4539, 218-681-6674; fax 218-681-3380
http://www.digikey.com).

†Serial Backpak from Scott Edwards Elec-
tronics, http://www.seetron.com

‡ht tp : / /www.son ic .ne t /~shageman /
2_meter.html

7200, fax 602-899-9210; http://microchip.
com.

2See John Hansen, W2FS, “Using PIC
Microcontrollers in Amateur Radio Projects,”
QST, Oct 1998, pp 34-40.—Ed.

3Steve Hageman, “Build Your Own Network
Analyzer—Part 1,” QST, Jan 1998, pp 39-45;
Part 2, QST, Feb 1998, pp 35-39.

4Steve Hageman, “A 2-Meter FM Receiver with
PC Control,” QST, Feb 1999, pp 35-40.

5http://www.sonic.net/~shageman/pna.html
6http://www.sonic.net/~shageman
7See Note 1.
8microEngineering Labs, Inc, Box 7532, Colo-

rado Springs, CO 80933, tel 719-520-5323;
fax 719-520-1867; http://www.melabs.com.

9See Note 6.
10CCS PCM, A C compiler for mid-range PICs

is available at http://www.ccsinfo.com.
11Be sure to note that since we are not using

any handshaking lines with the RS-232 con-
nection, set your terminal program’s hand-
shaking parameters to none, or as it is some-
times called, no flow control.

You can contact Steven Hageman at 9532
Camelot Dr, Windsor, CA 95492; shageman@
sonic.net.

http://www.digikey.com
http://www.seetron.com
http://www.sonic.net/~shageman/2_meter.html
http://www.sonic.net/~shageman/2_meter.html
http://microchip.com
http://microchip.com
http://www.sonic.net/~shageman/pna.html
http://www.sonic.net/~shageman
http://www.melabs.com
http://www.ccsinfo.com
mailto:shageman@sonic.net
mailto:shageman@sonic.net

